Кто из живых существ платит «двойную цену» за продолжение рода, а кто делает это «бесплатно»

20 декабря 2023

Поучительная история о бесстыжих ящерицах

Кто из живых существ платит «двойную цену» за продолжение рода, а кто делает это «бесплатно»
Историческая модель Aspergillus, Ботанический музей ГрайфсвальдИсточник: David Ludwig, CC BY-SA 3.0, через Викисклад

Итак, ситуация выглядит, мягко говоря, странно. Полового размножения не может быть, потому что эволюция ни за что бы не раскошелилась на «двойную цену», — но оно есть. Без полового размножения любой организм обречен погибнуть под грузом мутаций — но многие без него обходятся.

Половое размножение явно препятствует накоплению вредных мутаций — но, если верить теоретическим моделям, оно способно на это только при весьма определенных предположениях, которые вряд ли справедливы для всех земных существ. Но природа-то существует и будто вообще не замечает наших парадоксов. Наверное, самое время оторвать взгляд от абстракций и посмотреть на эту самую природу или хотя бы на какой-нибудь живой объект. Например, вот на этот.

С высоты это выглядит как плотный зеленый ковер. Но стоит вглядеться в детали, и вы увидите густые заросли, высокие стволы, ломящиеся под тяжестью плодов кроны. Если же углубиться в эти заросли, можно даже найти там огромные иссиня-черные грибы…

Точнее, это не совсем грибы. На самом деле гриб — это вообще все, что мы только что описали: и зеленые кроны, и высокие стволы. Все это — колония плесневого грибка аспергилла (Aspergillus, он же Emericella nidulans), растущая на чашке Петри, если разглядывать ее в бинокулярную лупу.

Кто из живых существ платит «двойную цену» за продолжение рода, а кто делает это «бесплатно»
Aspergillus nidulansИсточник: 222fjb at English Wikipedia, CC BY-SA 3.0, via Wikimedia Commons

Невооруженным глазом вы увидите зеленый ковер из спор, но даже с помощью простейшего инструмента становится видно, насколько сложно устроен этот организм. Внизу — переплетение гиф грибницы, врастающих в поверхность субстрата. Из него вертикально вверх торчат стволы — это специализированные органы размножения, конидиеносцы.

Каждый ствол заканчивается пузырьком-вздутием. Из пузырька во все стороны торчат особые вытянутые клетки — метулы. Над метулами еще один слой клеток — фиалиды, формой напоминающие кегли или бутылки. А над горлышком каждой фиалиды — длинная-длинная гирлянда спор, которые называются конидии.

Легкие дуновения — например, если вы, склонившись над своей бинокулярной лупой, о чем-то меланхолично вздохнете — разносят эти споры на большие расстояния, в результате чего зеленые пушистые колонии аспергилла вырастают тут и там, в том числе в таких местах, где пятно зеленой плесени никого особо не обрадует.

Это подробное описание, не лишенное даже некоторой поэтичности, помещено здесь не только потому, что когда-то этой плесени посчастливилось стать любимым исследовательским объектом автора, отдавшего ей лучшие годы жизни. Главное для нашей истории то, что аспергилл, как видим, имеет прекрасно развитую, высокоспециализированную структуру, предназначенную для размножения.

И размножение это бесполое. Из споры-конидии вырастает грибная гифа, она растет, наполняется делящимися ядрами, потом часть ядер мигрирует в конидиеносцы, они снова делятся, в какой-то момент переключают полярность деления так, что это начинает больше напоминать почкование дрожжей, и, наконец, ядра оказываются внутри спор. При этом ни в какой момент у гриба не возникает необходимость поискать себе партнера для счастливого брака.

Но, кажется, в самом начале мы разглядели что-то странное в глубине зарослей грибницы. То, что мы неосторожно назвали «грибами», — глянцевые упругие лиловые шары. Подцепим один такой шар иглой, перенесем в каплю чистой воды и аккуратно раздавим. В воду выйдет фиолетовое облачко.

Кто из живых существ платит «двойную цену» за продолжение рода, а кто делает это «бесплатно»
Конидиеносец вида Hyaloperonospora parasitica с несколькими конидиямиИсточник: Emmanuel Boutet, CC BY-SA 2.5, через Викисклад

Это тоже споры, но совсем другие. Чтобы не путать эти фиолетовые споры с теми, зелеными, их называют аскопоры (а те, как мы помним, конидии). И вот они-то — продукт полового размножения. К тем спорам, которые гирляндами вырастают на конидиеносцах, эти споры не имеют никакого отношения, и ни одна из специализированных структур гриба не используется и для того и для другого процесса одновременно.

Не так-то просто заставить нашу плесень произвести эти аскоспоры — для этого ей придется просидеть на чашке пару недель, в то время как бесполые конидии начинают образовываться уже через сутки. Темный шарик диаметром 0,3 миллиметра — те самые «огромные иссиня-черные грибы», которые мы увидели в лупу, — плодовое тело, которое называется клейстотеций, и это тоже специализированный орган размножения, но на этот раз полового.

Именно там проходит загадочный процесс перемешивания родительских генов, то есть кроссинговера или рекомбинации. И происходит он, судя по всему, практически так же, как у нас, что и неудивительно: если верить биологам, изучающим родословное дерево всего живого, мы с аспергиллом приходимся другу другу более близкими родственниками, чем нам обоим приходится, к примеру, капуста.

Итак, мы только что своими глазами (пусть и с помощью бинокулярной лупы) рассматривали организм, который умеет размножаться с помощью секса ничуть не хуже нас с вами, но может отлично размножаться и без него. По каким-то причинам он таскает за собой по извилистым дорожкам эволюции оба эти способа, независимые друг от друга и довольно прихотливые.

Таким образом, если кто-то думал, что половое размножение существует лишь потому, что размножаться по-другому живые существа не научились, то теперь ясно, что это не так.

Между прочим, в случае плесневых грибов этот факт очень сильно спутал карты биологам, помешанным на классификации всего на свете. Дело в том, что, когда речь идет о низших растениях или грибах, именно их манера размножаться была принята в качестве главного критерия классификации.

По своему способу полового размножения гриб, о котором мы говорили, относится к аскомицетам (как, например, сморчки или пивные дрожжи), и самые занудные из биологов присвоили ему сакральное имя «эмерицелла». Но биологи попроще запросто называют его аспергиллом, как и множество других очень похожих на него видов грибов, имеющих точно такие же конидиеносцы, метулы и фиалиды, но при этом не образующих никаких плодовых тел. Все они действительно близкие родственники — практически один род.

Однако многие члены рода утратили способность к половому размножению, и по этому признаку таксономисты вынуждены были не только использовать два разных родовых названия, но и относить бесполые виды аспергиллов к другому отделу царства грибов — дейтеромицетам. Так и получилось, что очень похожие и близкородственные виды плесени пришлось искусственно разделять на эмерицеллы и аспергиллы (или, к примеру, таларомицесы и пенициллы) и разносить — в угоду пунктуальным биологам-таксономистам — по далеким друг от друга отделам.

Никакого глубокого биологического смысла в этом нет. У той же эмерицеллы существуют мутации, из-за которых она теряет способность производить свои замечательные сине-черные шары. Очень глупо на этом формальном основании отказывать бедным больным грибочкам в высоком звании аскомицета.

С другой стороны, отучить этот гриб — давайте уже я буду называть его Aspergillus nidulans, как привык, — размножаться бесполыми конидиями тоже несложно. Мне привелось несколько лет работать в Университете Глазго в лаборатории Джона Клаттербака, который собрал замечательную коллекцию мутантов аспергилла, по разным причинам не способных производить конидии. Одни из них, к примеру, отращивают стволы-конидиеносцы, но все заканчивается образованием пузырька-вздутия. У других дело доходит до длинной цепочки метул, которые так и не начинают отпочковывать споры.

Этот последний мутант получил от Джона имя абакус — цепочка метул напомнила ему конторские счеты, которые именно так называются по-гречески, то есть по-серьезному и по-научному.

А в конце 1990-х Джон навестил меня в Москве и во время нашей экскурсии по Арбату с изумлением увидел в одном из магазинчиков самые настоящие счеты. Хмурая продавщица сперва сосредоточенно стучала по клавишам кассовой машины, а затем, видимо для пущей точности, повторяла на счетах свои вычисления.

Как оказалось, до этого момента Джон видел «абакус» только на картинках, и я даже чувствую некоторую гордость, что благодаря моей нелепой затее прогуляться по Арбату он встретился с этим загадочным объектом вживую.

Но здесь у нас все-таки не мемуары, а нечто научно-популярное. К чему этот разговор? Вот что мы можем понять из внимательного взгляда на всего одну веточку жизни, смиренную плесень аспергилл.

Во-первых, она умеет прекрасно размножаться без всякого намека на секс. Если из предыдущих частей у кого-то сложилась идея, что из-за «двойной цены» секса организмы должны хвататься за каждую возможность перейти на бесполое размножение и отбросить половой процесс как досадный атавизм, то теперь ясно, что ничего подобного не происходит, да и саму «двойную цену» в этом примере с плесенью не так уж просто отыскать.

Во-вторых, возникает смутное ощущение, что эти синие шары и фиолетовые аскоспоры нужны аспергиллу не только и даже не столько для размножения, сколько для иных надобностей, — вспомним, что вырастают они лишь через пару недель, когда питательные вещества на родной чашке в основном уже съедены и грибу пора задуматься о заселении новых мест.

Это неплохо согласуется с идеей ранних теоретиков о том, что перетасовка генов во время полового процесса позволяет создавать их новые комбинации, более пригодные для меняющихся условий жизни и заселения новых ниш.

В-третьих, половой процесс у аспергилла основан на точно таком же мейозе, который происходит у нас с вами или, к примеру, у растений. Можно поручиться, что возник этот самый мейоз у очень древних наших предков — скорее всего, этим навыком уже владел общий предок всей сложной жизни на Земле.

С другой стороны, аппарат производства конидий, при всей его изысканной сложности, встречается только у нескольких классов грибов. Надо полагать, он появился в ходе эволюции существенно позже. Еще позже некоторые грибы все же рискнули отказаться от полового размножения вообще.

Кто из живых существ платит «двойную цену» за продолжение рода, а кто делает это «бесплатно»
Конидий у Aspergillus nigerИсточник: Викисклад

Почему мы думаем, что это случилось позже? Да потому, что такие «отказники» образуют на эволюционном древе лишь отдельные небольшие веточки, притом что их ближайшие родственники остались верны традициям.

Но что это мы все о грибах? Есть и более интересные — как мы говорим, высокоразвитые — организмы. У растений, к примеру, тоже бывают отдельные органы, предназначенные для бесполого размножения, возьмите для примера хоть клубень картошки. Что касается животных, они обычно не заводят себе отдельную манеру размножаться без секса, а лишь слегка модифицируют половой процесс.

Вот, например, один интересный вариант — научиться оплодотворять свои собственные яйца. Из позвоночных этим фокусом овладела, кажется, только рыбка мраморный ривулус, обитающая в мангровых топях, но среди беспозвоночных таких умельцев существенно больше.

1 из 2

Мраморный ривулус (лат. Kryptolebias marmoratus)Источник: 

Vassil, CC0, via Wikimedia Commons

Куда более распространенный прием — упомянутый выше партеногенез, когда потомству дозволяется развиваться из неоплодотворенных яйцеклеток. Проблема тут в том, что неоплодотворенное яйцо обычно гаплоидно, то есть содержит одинарный набор хромосом — вдвое меньше, чем тот, кто это яйцо отложил.

Такому потомству придется навеки забыть о мейозе. Но если делать таким способом, к примеру, только самцов, а мейоз и рекомбинацию поручить диплоидным самкам, можно создать вполне процветающие ветви эволюции вроде пчел и муравьев.

Другой вариант партеногенеза — опять же обойтись без оплодотворения, но каким-то способом сделать яйцеклетку диплоидной. К примеру, она может просто пропустить свой мейоз, или пройти его, а потом удвоить свои хромосомы собственными силами перед началом развития, или просто слить две получившиеся в результате мейоза клетки. Это умеют многие.

Вот, например, живет в далекой Америке симпатичная ящерица по имени хлыстохвост. Когда две самки хлыстохвоста встречаются, одна проделывает над другой характерные движения любви. От радости у второй ящерицы происходит овуляция, да такая, что яйцеклетки без всякого оплодотворения тут же начинают развиваться в зародышей. Потом ящерицы меняются местами, чтобы никому не было обидно. Вместо одной беременной ящерицы мы получаем сразу двух — никакой «двойной цены» за секс платить больше не надо. Это огромный скачок в эффективности размножения.

Кто из живых существ платит «двойную цену» за продолжение рода, а кто делает это «бесплатно»
Полосатая аризонская хлыстохвостая ящерица (лат. Cnemidophorus inornatus) Источник: Dawson at English Wikipedia., CC BY-SA 2.5, via Wikimedia Commons

Наконец, можно даже сохранить весь половой процесс, но при этом вроде бы не платить «двойную цену» — для этого счастливой паре надо просто оплодотворять друг друга, одновременно или по очереди, уж как договорятся. Это называется гермафродитизм и тоже встречается сплошь и рядом у самых разных существ.

О таких затейниках мы пока рассуждать не будем, потому что они вроде бы достигают того, ради чего, как мы подозреваем, существует секс: тасуют свои гены путем рекомбинации и создают их новые ансамбли. О прелестях разделения на два пола речь пойдет позже. А сейчас интересно то, что и те, кто обманул эволюцию и обходится без всякого спаривания, вроде бы тоже процветают. Как это так?

Тут надо быть осторожным в оценках. Процветают они или нет, покажет время, причем неблизкое. Для человеческого восприятия эволюция сложных организмов довольно медленный процесс, и мы за все время существования нашей цивилизации чаще всего видим лишь ее мгновенный кадр, застывшую картинку.

Кстати, когда в этой картинке удается заметить движение, людям свойственно кричать «караул, экологическая катастрофа!» — к примеру, мы кричим так, когда на наших глазах биологический вид заселяет новый ареал обитания (24 июля 2011 года один рыбак поймал в Волге килограммовую пиранью). Или, наоборот, вид исчезает там, где еще недавно процветал (а осетра этот рыбак между тем не поймал — а еще сто лет назад мог бы).

Может быть, те, кто не пользуется сексом, обречены. Как об этом судить? Например, мы можем, как в случае грибов-дейтеромицетов, заметить, что отказавшаяся от секса плесень не имеет глубоких эволюционных корней: эта группа собрана по совершенно искусственному признаку. То же и с хлыстохвостами: они отказались от секса, но все их ближайшие родственники явно относятся к этой инновации неодобрительно и размножаются по старинке.

Таким образом, вполне возможно, что все парадоксы, с которых мы начали эту главу, в природе успешно разрешаются. Секс действительно имеет свою цену, и те, кто сумел от него отказаться, некоторое — возможно, по человеческим меркам весьма долгое — время способны процветать. Накопление вредных мутаций у тех, кто размножается клонально (то есть без секса), действительно происходит, но оно может происходить не так уж стремительно.

Английский, а впоследствии канадский биолог Грэм Белл (род. 1949) подсчитал, от чего это зависит. У существ с маленьким размером популяций и большим геномом мутационная катастрофа не заставит себя ждать, и, чтобы избежать ее, им необходимо заниматься сексом буквально в каждом поколении. У нас с вами, как и у большинства позвоночных, ситуация именно такова, отчего и возник термин «половое размножение» — как будто перетасовка генов и рождение потомков принципиально неразделимы.

А вот тем, у кого геном поменьше, а особей побольше, — как те же плесневые грибки — можно заниматься сексом лишь время от времени, каковой возможностью они и пользуются. Бактерии, с их огромными размерами популяций и крохотными геномами, вообще успешно заменяют секс совершенно другими практиками, о которых мы поговорим позже.

Еще один важный параметр — частота, с которой возникают мутации к бесполости. Американский генетик Джордж Уильямс (1926–2010), который скоро еще раз появится в нашей истории, предположил, что одна из причин сохранения секса — технические трудности, которые приходится преодолевать организму при переходе к клональному размножению.

Если стать бесполым сложно, такое событие будет маловероятным. Тогда на большом дереве жизни бесполые веточки будут вырастать не слишком часто — так, чтобы не заглушить рост всей кроны. Конечно, в свой срок эти ветки будут отмирать, строго в соответствии с предсказанием Германа Мёллера, но само дерево выживет.

А почему это вдруг бесполые веточки вырастают так редко — неужели просто повезло? Возможно, дело не в везении. Просто те части дерева, где они вырастали часто, — населенные организмами, для которых переход к бесполости не представлял никаких проблем, — уже давно отсохли все, целиком.

Сперва обильно растущие бесполые ветки заглушили сексуальную поросль, а потом погибли сами под грузом мутаций. Остались лишь те части дерева, где в механизм размножения оказались заложены какие-то гаджеты, мешающие переходу к бесполости (либо просто убивающие бесполых отщепенцев быстрее, чем те вытеснят сексуалов). Запомним этот интересный аргумент, он еще пригодится для понимания современных гипотез об эволюции мейоза.

Впрочем, здесь мы проходим в опасной близости от одного недоразумения, которое довольно долго омрачало многие рассуждения генетиков о сексе. Прежде чем перейти к еще одной группе гипотез о происхождении полового размножения, нам придется с этим разобраться.

Библиография

  • Bell G. A. C. The Masterpiece of Nature: The Evolution and Genetics of Sexuality. London: Croom Helm; Berkeley: University of California Press, 1982.
  • Clutterbuck A. J. A Mutational Analysis of Conidial Development in Aspergillus nidulans. Genetics. 1969. 63(2): 317–327.
  • Engelstädter J. Constraints on the Evolution of Asexual Reproduction. Bioessays. 2008. 30(11–12): 1138–1150.
  • Hörandl E. The Classifi cation of Asexual Organisms: Old Myths, New Facts, and a Novel Pluralistic Approach. Taxon. 2018. 67(6): 1066–1081.
  • Janko K., Mikulíček P., Hobza R., et al. Asexual Species in Ecology and Evolution. biorxiv. 2021. 463480v1.
  • Judson O. P., Normark B. B. Ancient Asexual Scandals. Trends in Ecology & Evolution. 1996. 11(2): 41–46.
  • LibreTexts Biology. 2022. 43.1B: Types of Sexual and Asexual Reproduction. https://bio.libretexts.org
  • Nieuwenhuis B. P. S., James T. Y. The Frequency of Sex in Fungi. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 2016. 371(1706): 20150540.
  • Schwander T., Crespi B. J. Twigs on the Tree of Life? Neutral and Selective Models for Integrating Macroevolutionary Patterns with Microevolutionary Processes in the Analysis of Asexuality. Molecular Ecology. 2009. 18(1): 28–42.
  • Williams G. C. Sex and Evolution. Princeton: Princeton University Press, 1974.

Отрывок из книги Алексея Алексенко «Секс с учеными: Половое размножение и другие загадки биологии». М.: Издательство Альпина нон-фикшн, 2024.

Читайте книгу целиком

Величайшие биологи прошлого пытались разобраться в том, для чего живым существам нужно половое размножение, как оно возникло, какую пользу принесло и почему не исчезло. В книге «Секс с учеными» рассказывается, как ученые попытались связать секс с мутационным процессом и в результате создали целую область науки — популяционную генетику. Речь заходит о разделении на два пола, в котором ничего нельзя понять без теории игр, и половых хромосомах, вокруг которых закручиваются увлекательные сюжеты из молекулярной биологии. Затем повествование переходит к мейозу, о котором до сих было крайне затруднительно прочитать что-то понятное неспециалистам. В связи с ним затрагивается и важнейший вопрос современной науки — происхождение жизни на Земле. Наконец, нашлось в книге место и для обсуждения роли секса в жизни общества, о которой все вроде бы давным-давно написано, но лишняя пара глав никому не повредит.

Автор текста: Редакция

https://www.vokrugsveta.ru/articles/kto-iz-zhivykh-sushestv-platit-dvoinuyu-cenu-za-prodolzhenie-roda-a-kto-delaet-eto-besplatno-id927157/

Рубрики: Грибные новости страны и мира

Добавить комментарий

Ваш адрес email не будет опубликован.