Тюменский ученый подключил искусственный интеллект к изучению лесов

20 октября 2022

Ирина Никитина (Тюменская область)

На тюменском Science Slam, проекте, созданном для популяризации науки, молодой ученый Александр Галанов убедил слушателей, что предсказание состояния лесов — не просто интересная, а сверхважная тема. За короткое оригинальное выступление молодой человек удостоился главной награды.Александр Галанов, изучая биомаркеры, для анализа использует цифровые инструменты. / Ирина Никитина/РГАлександр Галанов, изучая биомаркеры, для анализа использует цифровые инструменты. / Ирина Никитина/РГ

За искрометной речью кроется многодневный кропотливый труд по поиску биомаркеров в лесах и соответствующих им лесопатологических феноменов: маркеры обрабатывает нейросеть, регистрируя таксационные, типологические, метеорологические и прочие зависимости. Итогом исследования станет заблаговременное выявление ослабленных участков, их заселения вредителями или заражения болезнями, причем, что важно, работа облегчит прогнозирование.Динамику распределения деревьев и их будущее развитие наобум не предсказать, а через спецприложение будет реально

— Как наши прадеды определяли, что с лесом что-то не так? Да на глаз: тут хвоя зеленая, тут желтая — все понятно. Но сегодня известно огромное количество других биомаркеров, указывающих на то, что деревья болеют, стареют, погибают. Это могут быть результаты жизнедеятельности насекомых — смоляные воронки, буровая мука, отверстия, маточные ходы и семейства под корой, а также мохово-лишайниковые покрытия, грибы. Рассматривать одну лишь хвою уже недостаточно. А если рядом с елкой лось прошел, кору содрал — вот растительный покров и изменился… Моя задача — найти и систематизировать все маркеры с помощью ГИС-технологий и нейросети. Они, к слову, в нашей отрасли в последние пять лет набирают такой же оборот, как и дендрохронология, — рассказывает Александр Галанов.

Он магистрант Государственного аграрного университета Северного Зауралья, но параллельно с учебой активно работает инженером на Сибирской лесной опытной станции ВНИИ лесоводства и механизации лесного хозяйства, а также биоинформатиком в лаборатории геномных исследований в растениеводстве НИИ сельского хозяйства Северного Зауралья Тюменского научного центра СО РАН.

Свою методику молодой ученый оттачивает на горельниках в Тюменской и Курганской областях: определяет санитарное состояние участка, самочувствие выживших после пожара взрослых деревьев и подроста, ищет образцы, загружает данные в нейросеть для выявления закономерностей. Процесс продвигается небыстро: нужно прежде все обойти, что называется, ногами, определить координаты точек, заказать снимки и карты. Зато, когда искусственный интеллект обучится, он сам будет выполнять работу в считанные секунды. Соседний регион интересен огромными популяциями шестизубого короеда и березового заболонника, как и несметным числом сувелей и сухобочин, случаев смоляного рака сосны, сыплет непонятными обычному человеку названиями Александр.

Параллельно с выявлением шестизубых жуков Александр пытается реабилитировать в научном мире такой показатель, как сомкнутость крон — он практически не изучается коллегами, но для его исследования оказался важным. Если он ниже, в лесу ожидаемо больше просвета — тогда через радар можно рассмотреть дебрис, валежник, различить подрост, подлесок, живой напочвенный покров и собрать полноценную информацию. А если нейросеть научится определять сомкнутость автоматически, процесс сбора данных еще ускорится. Кроме того, Галанов ввел в оборот такое понятие, как «диффузия лесов» — он исследует взаимное влияние друг на друга граничащих участков. Например, способен ли вредитель с одной территории перейти на другую и в какие сроки, влияют ли последствия пожаров в одной чаще на развитие другой, почему тут обилие пауков, а там они практически отсутствуют.

— Выстраивать диффузию планирую по примеру шахматной доски. У каждой клеточки — лесного участка суммируются все показатели. Будут и прогнозы с советами лесникам. А вообще конечная цель — создать сервис, который бы по радиолокационным снимкам, или радарной космической съемке, мониторил состояние лесных массивов. Мы, например, уже знаем, что из-за повышения средней температуры на один градус границы тайги смещаются к северу на 100 километров. Кроме того, леса пошли вверх. Но динамику распределения деревьев и их будущее развитие наобум не предсказать, а через спецприложение будет реально, — уверен исследователь.

Очевидно, что работа молодого ученого — без финальной точки: лес растет и будет расти. На итоговое оформление электронной площадки в Тюменской области он отводит пять лет. После перенастройки ресурс можно будет применять абсолютно к любой территории страны.

https://rg.ru/2022/10/20/reg-urfo/samochuvstvie-sosny.html?utm_source=yxnews&utm_medium=desktop

Рубрики: Грибные новости страны и мира

Добавить комментарий

Ваш адрес email не будет опубликован.